
Language Design for Implementing
Process Scheduling Hierarchies

(Invited Paper)

Julia L. Lawall
DIKU, University of Copenhagen

2100 Copenhagen Ø,
Denmark

julia@diku.dk

Gilles Muller
Obasco Group, EMN/INRIA

44307 Nantes Cedex 3,
France

gilles.muller@emn.fr

Hervé Duchesne
Obasco Group, EMN/INRIA

44307 Nantes Cedex 3,
France

herve.duchesne@emn.fr

ABSTRACT
Standard operating systems provide only a single fixed sched-
uler, which does not meet all possible application scheduling
needs. More flexibility can be achieved using a hierarchy of
schedulers, allowing multiple schedulers to coexist in a single
operating system (OS). Bossa is a framework for facilitating
the implementation and deployment of OS process sched-
ulers. In this paper, we describe the features of Bossa that
enable the creation and management of a scheduling hierar-
chy. These features include a domain-specific language for
implementing schedulers and a type system for describing
requirements on scheduler behavior. The use of the domain-
specific language eases scheduler development and enables
scheduler verification. We have found that the approach
allows programmers, even students who are not kernel or
scheduling experts, to easily and safely implement and de-
ploy schedulers that meet specific application needs.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages; D.4.1 [Operating
Systems]: Process Management—Scheduling ; D.4.7 [Oper-
ating Systems]: Organization and Design; F.3.1 [Theory
of Computation]: Specifying and Verifying and Reasoning
about Programs

General Terms
Languages, Verification

Keywords
Domain-Specific Languages, Process scheduling, Scheduling
hierarchies, Operating System extension, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PEPM’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-835-0/04/0008 ...$5.00.

1. INTRODUCTION
An operating system (OS) process scheduler controls when
and for how long each process is given access to the CPU.
Standard OSes, such as Linux and Windows, provide a sin-
gle fixed scheduler, which is intended to provide adequate
service to most kinds of applications. Such a scheduler typ-
ically guarantees that every process that is able to run will
eventually get access to the CPU, and controls the frequency
and duration of this access using a priority. Nevertheless,
this kind of scheduling strategy does not address all schedul-
ing requirements. For example, it is not enough to know that
a video player will eventually obtain access to the CPU; in-
stead, the player must have access to the CPU within the
precise intervals that correspond to its frame rate. As an-
other example, a system administrator may want to restrict
all of the processes generated by a multithreaded Web server
to only a fixed percentage of the CPU, to prevent the pro-
cesses generated by a flood of requests from overwhelming
the system. Such a restriction cannot be expressed by a
priority mechanism.

To meet such varied scheduling needs, multiple schedulers
must be able to coexist in a single OS. One solution is to
multiplex the CPU among a set of process schedulers, where
the strategy for choosing among them is controlled by yet
another scheduler. We refer to such a scheduler of schedulers
as a virtual scheduler. To allow multiple strategies for choos-
ing between schedulers, this approach can be generalized to
the use of a hierarchy of schedulers [11]. Figure 1 illustrates
a hierarchy in which a Fixed-Priority virtual scheduler gives
a multimedia process scheduler priority over all other sched-
ulers, and a Proportion virtual scheduler divides the remain-
ing CPU time between a scheduler for Web-server processes
and a scheduler for ordinary processes. This hierarchy both
ensures that a video player managed by the scheduler for
multimedia applications gets access to the CPU at regular
intervals and constrains all of the processes generated by a
Web server to execute within a fixed percentage of the CPU
time.

Although the use of a hierarchy permits multiple sched-
ulers to coexist, the problem remains of how to implement
such a hierarchy. Modifying a standard OS to replace the
existing scheduler by a hierarchy is a difficult task, requiring
a deep knowledge of the internals of the OS and low-level
programming in an environment that provides little debug-
ging support. Frameworks have been proposed that provide

Fixed-Priority
virtual

scheduler

Proportion
virtual

scheduler

Scheduler for
multimedia
applications

Scheduler for
ordinary processes

Scheduler for
Web-server processes

10

����
��

��
�

20

��
<<

<<
<<

<

60%

����
��

��
�

40%

��
??

??
??

?

Figure 1: A scheduling hierarchy. The Fixed-
Priority virtual scheduler gives priority 10 to the
Proportion virtual scheduler and priority 20 to the
scheduler for multimedia applications. The Propor-
tion virtual scheduler gives its child schedulers 60%
and 40% of the available CPU time, respectively.

an API for constructing a hierarchy, but do not formally
describe what each API function should do or address the
difficulty of programming at the OS kernel level [3, 4, 5, 10,
11].

Bossa is a framework for implementing and deploying both
process schedulers and virtual schedulers in a standard OS
that has been augmented with a Bossa run-time system
[1, 2, 7]. This framework provides a domain-specific lan-
guage (DSL) for implementing scheduling policies. The DSL
guides and simplifies the implementation of a scheduling pol-
icy and permits verification that the decisions taken by the
implementation are coherent with the behavior of the target
OS. For example, the Bossa verifier ensures that a scheduler
cannot elect a process that is blocked waiting for an I/O
operation. Aspects of OS behavior relevant to this verifi-
cation are factorized into a type system, making the Bossa
framework OS-independent [8].

In this paper, we present the Bossa support for virtual
schedulers. The contributions of this paper are as follows:

• We present an infrastructure for loading schedulers,
constructing a scheduling hierarchy, and managing com-
munication within a scheduling hierarchy.

• We describe language constructs provided by the Bossa
DSL for specifying the interaction between a virtual
scheduler and its child schedulers.

• We present an approach to deriving types for virtual
schedulers from types that describe the process-level
semantics of OS scheduling events.

• We briefly describe the process of verifying that a sched-
uler satisfies these types and present compiler opti-
mizations that use type information. The verification
process is described in more detail elsewhere [8].

• We show that little overhead is incurred for the use of
a scheduling hierarchy.

The rest of this paper is organized as follows. Section 2
gives an overview of process scheduler behavior. Section 3
describes the Bossa infrastructure for constructing and in-
teracting with a scheduling hierarchy. Section 4 presents

the Bossa DSL, including the constructs particular to vir-
tual schedulers. Section 5 gives an overview of the type sys-
tem, and addresses the problem of inferring types for virtual
schedulers. Section 6 describes the use of these types in ver-
ification and optimization of a virtual scheduler. Section 7
provides some benchmarks assessing the performance of vir-
tual schedulers. Finally, Section 8 presents related work and
Section 9 concludes.

2. SCHEDULER BEHAVIOR
The heart of a process scheduling policy is an algorithm for
electing a process from the set of processes that are eligible
to have access to the CPU. While the exact algorithm is spe-
cific to each policy, a feature that is common to all policies
is the need to determine the set of eligible processes. The
eligibility of a process depends at least on its ability to run
based on its recent interaction with the OS. For example,
when a process requests to read from a file, it is unable to
run, and thus ineligible, until the disk makes the file data
available to the OS. Subsequently, the interrupt indicating
that the file data is available makes the process newly able to
run. A scheduling policy can impose further criteria for eli-
gibility. For example, a round-robin policy makes a process
ineligible when it has used up its time slice.

The need to identify the set of eligible processes implies
that a scheduler must be aware of the actions in the kernel
that affect process eligibility and that it must record the ef-
fect of these actions for subsequent use in making scheduling
decisions. In the Bossa framework, the OS kernel informs
the scheduler of scheduling-related kernel actions via a set
of event notifications [7]. Events indicate the need to elect a
new process, as well as kernel actions that affect process eli-
gibility, such as process creation, termination, blocking, and
unblocking. A Bossa scheduler provides a set of handlers
for these events. A scheduler also defines a set of process
states that event handlers use to record the effect of events
on process eligibility.

For a scheduling policy to function correctly, the process
state transitions performed by the handlers must model the
behavior associated with the corresponding OS event. To
ensure safety, this property must be verified statically. Be-
cause not all OSes behave in the same way, Bossa provides
a type system for expressing the set of state transitions
allowed for each event. Types amount to pre- and post-
conditions on event-handler behavior. Checking these types
requires that the verifier can identify the set of states used
by a given policy, determine the semantics of each state, and
identify state transitions in the event handler code. These
operations are difficult in scheduling code written using a
general-purpose language, where states and state transitions
can be implemented in arbitrary ways.1 The Bossa DSL in-
cludes specific abstractions for declaring states and imple-
menting state transitions, making it possible to statically
identify the state transitions performed by a handler and to
check that these satisfy the required types [2, 8].

This description of scheduler behavior pertains to process
schedulers, which manipulate processes directly. In the rest
of this paper, we show how to extend this behavior to virtual
schedulers.

1For example, in Linux 2.4 the state of a process is indicated
in part by the state field and in part by the policy field of
the associated process structure.

Scheduler
for

ordinary
processes

(1)
→

Fixed-Priority
virtual

scheduler

10
��

Scheduler
for

ordinary
processes

(2)
→

Fixed-Priority
virtual

scheduler

10
����
�� 20

��
22

22

Scheduler
for

ordinary
processes

Scheduler
for

multimedia
applications

Figure 2: The construction of a scheduling hierarchy

int mount(char *parent_name, char *child_name,
int child_property_count,
int *child_properties);

int mount_root(char *new_root_name,
int child_property_count,
int *child_properties);

void unmount(char *scheduler_name);

Figure 3: The Bossa API for adding schedulers to
and removing schedulers from a hierarchy.

3. HIERARCHY MANAGEMENT
Bossa allows applications to create, dismantle, and move
around in a hierarchy, according to their scheduling needs.
We first describe the infrastructure implementing these op-
erations, and then describe how the OS interacts with the
resulting hierarchy.

3.1 Application interaction with a hierarchy
A scheduling hierarchy has the form of a tree with a sin-
gle virtual scheduler as the root (or a process scheduler as
the root if it is the only scheduler in the hierarchy), virtual
schedulers as the internal nodes, and process schedulers as
the leaves. Figure 2 illustrates the construction of such a hi-
erarchy. A hierarchy initially consists of a single scheduler,
known as the default scheduler, that is statically linked with
the kernel. Other schedulers can be either statically linked
with the kernel or dynamically loaded as kernel modules. A
user-level process can add a virtual scheduler at the root of
the scheduling hierarchy, as shown by transition (1) in Fig-
ure 2, and a process scheduler or virtual scheduler as the
child of an existing virtual scheduler, as shown by transition
(2). In each case, attributes, such as the priorities shown in
Figure 2, may need to be specified for the child scheduler.
A scheduler can be removed from the hierarchy if it has no
children, or if it is a virtual scheduler at the root of the hier-
archy and has only one child scheduler. Figure 3 shows the
API for carrying out these operations.

Every process is initially managed by the default sched-
uler or by the scheduler of its parent. A scheduler defines
attach and detach interface functions to enable processes to
change scheduler. A process changes scheduler by invoking
the attach function of the new scheduler with the required
process attributes. If the attachment succeeds, i.e., if any
admission criterion is satisfied, then the new scheduler in-
vokes the detach function of the original scheduler, ensuring
that every process is managed by exactly one scheduler at
a time. For example, once a video player has created the
hierarchy shown in Figure 2, it can move from the scheduler

VS1

VS2 PS2

PS1

p1 tgt

p2

������ VS1

PS1 PS2

p1 p2

10 20������

(a) (b)

Figure 4: (a) An event notification indicating a
change in the eligibility of a process is forwarded
toward the process scheduler managing the affected
process, tgt. (b) An event notification indicating
the need to elect a new process is forwarded to the
elected child scheduler. Double lines indicate event
forwarding.

for ordinary processes to the scheduler for multimedia ap-
plications by invoking this scheduler’s attach function with
information about the player’s frame rate and CPU require-
ments.

3.2 OS interaction with a hierarchy
In the Bossa framework, the OS interacts with the scheduler
via a set of event notifications. To generalize this approach
to a hierarchy of schedulers, we must consider how these
event notifications should propagate through the hierarchy.
The receipt of an event notification affects the eligibility of
the processes managed directly or indirectly by the children
of a virtual scheduler. We thus adapt the notion of process
state to describe properties of these child schedulers.

Event notifications are received at the root of the hier-
archy and forwarded along a path through the hierarchy
toward a process scheduler among the leaves. Some cases
are shown in Figure 4. If the event notification indicates a
change in the eligibility of a process, such as process block-
ing or unblocking, then the event must be forwarded toward
the scheduler managing the affected process, as illustrated
in Figure 4a. Any scheduler that receives the event notifi-
cation can also preempt the child scheduler that is directly
or indirectly managing the running process, if any. Such
preemption has the effect of propagating a series of preempt
notifications toward the process scheduler directly manag-
ing this process. On the other hand, if the event notification
indicates the need to elect a new process, then each sched-
uler that receives the event notification elects one of its child
schedulers and forwards the event to this scheduler, until the
event notification reaches a process scheduler. This process
scheduler then elects a new process to have access to the
CPU. Figure 4b shows the case of a Fixed-Priority virtual
scheduler (VS1) that forwards such an event notification to
the highest-priority child scheduler that is managing any el-
igible processes.

States are used in a virtual scheduler to record the ex-
istence of eligible processes among the processes managed
directly or indirectly by each child scheduler. The result of
forwarding an event notification is the new scheduler state of
the child scheduler, which indicates whether this scheduler
is directly or indirectly managing the running process, or
any processes that are ready to run. The virtual scheduler
uses this information to update its view of the state of the
child scheduler.

states = {
RUNNING running : process;
READY ready : sorted queue;
READY expired : queue;
READY yield : process;
BLOCKED blocked : queue;
TERMINATED terminated;

}

On unblock.preemptive {
if (e.target in blocked) {

e.target => ready;
if (!empty(running) && e.target > running) {

running => ready;
}

}
}

Figure 5: Extracts of the implementation of the
Linux process scheduler

4. THE BOSSA DSL
In the Bossa framework, process schedulers and virtual sched-
ulers are implemented using a DSL. This DSL defines a
scheduling policy in terms of a collection of declarations,
event handlers, and interface functions. Declarations de-
scribe global variables, process attributes, process states,
and the relative ordering of processes. Event handlers de-
scribe the interaction with the OS. Interface functions de-
scribe the interaction with user-level processes. We focus on
the states and event handlers, which determine the correct-
ness of the interaction between the scheduling policy and the
target OS. As examples, we use extracts of Bossa implemen-
tations of the Linux process scheduler and the Fixed-Priority
virtual scheduler for use with a Bossa-enabled version of the
Linux kernel.

4.1 States
A process scheduler records the eligibility of processes using
a set of process states. As shown in Figure 5, the states
defined by the Linux scheduling policy are running, ready,
expired, yield, blocked, and terminated. Each state is
annotated with a state class, indicating the eligibility of pro-
cesses in that state. The state classes are fixed by the Bossa
DSL and there must be at least one state in each state class.
The RUNNING state class indicates that a process in the given
state is running.2 The READY state class indicates that the
processes in the given states are able to run. The BLOCKED

state class indicates that the processes in the given states
are not able to run. The TERMINATED state class indicates
that the processes in the given states are terminating. State
classes describe the semantics of the associated states, and
are used in the verification process described in Section 6.
Each state declaration also includes information about the
data structure used to store the set of processes in the state.

A virtual scheduler is concerned not with the eligibility of
individual processes, but with the ability of each child sched-
uler to elect a process. As shown in Figure 6, the states
defined by the Fixed-Priority policy are running, ready,
yield, and blocked. State classes are used to describe
the eligibility of the processes managed by the schedulers

2Bossa is currently targeted toward monoprocessors. Thus,
a policy must declare exactly one state in the RUNNING state
class and there may be at most one process in this state.

states = {
RUNNING running : scheduler;
READY ready : public sorted queue;
READY yield : scheduler;
BLOCKED blocked : queue;

}

On unblock.preemptive {
if (next(e.target) in blocked) {

if (!empty(running) && next(e.target) > running) {
running => ready;

}
}
next(e.target) => forwardImmediate();

}

Figure 6: Extracts of the implementation of the
Fixed-Priority virtual scheduler

in these states. The state class RUNNING means that the
scheduler in the associated state is managing the running
process. The state class READY means that the schedulers
in the associated states are not managing the running pro-
cess, but are managing some processes that are able to run.
The state class BLOCKED means that the schedulers in the
associated states are not managing the running process or
any process that is able to run. The remaining annotations
associated with a state declaration describe the implemen-
tation of the state, except for the keyword public, which is
described below.

4.2 Event handlers
The event notifications of the kernel either inform the sched-
uler of changes in the eligibility of processes or request that
the scheduler initiate a change in the eligibility of a process
by electing a new process. To illustrate how a Bossa sched-
uler reacts to changes in process eligibility, we consider the
unblock.preemptive event, which occurs when a process is
unblocking and when the scheduler may, if desired, preempt
the running process.

In a process scheduler, the handlers manipulate processes
directly. A handler may check the state of a process using
the construct exp in state, change the state of a process to
state using the construct exp => state, and check whether
there are no processes in a given state using the construct
empty(state). The use of these constructs is illustrated by
the unblock.preemptive handler of the Linux scheduling
policy shown in Figure 5. This handler checks whether the
unblocking process, referred to as the target process and
designated as e.target, is in the blocked state. If so, it
changes the state of the unblocking process to ready. If
there is a running process and this process has a lower pri-
ority than the unblocking process, then the running process
is preempted by changing its state to ready as well. If the
unblocking process is not currently blocked, which can occur
due to particularities of the Linux kernel, there is no further
action.

In a virtual scheduler, the handler of the unblock.pre-

emptive event must forward the event notification to the
process scheduler managing the unblocking process. Event
forwarding is implemented using the following constructs:

next(exp) exp => forwardImmediate()

The expression next(exp) returns the child scheduler that is

directly or indirectly managing the process exp. The state-
ment exp => forwardImmediate() is a variant of the state
transition operation exp => state that forwards the event
to the child scheduler designated by exp. As a result of the
event forwarding, the child scheduler returns its scheduler
state. If this scheduler state does not correspond to the
state class of the child scheduler’s current state, then the
forwarding operation ends by selecting a new state for the
child scheduler. If there is only one state in the state class
corresponding to the child’s scheduler state, then that state
is used. Otherwise, the state designated as public is used.
The handler can subsequently change the state to another
state in the same state class, if desired.

The unblock.preemptive handler of the Fixed-Priority
scheduling policy forwards the event notification to the child
scheduler managing the unblocking process, and possibly
preempts the running process. This behavior is analogous
to that of the Linux scheduling policy, except that here the
scheduler manipulates the schedulers managing the unblock-
ing and running processes, rather than manipulating these
processes directly. The handler begins by checking whether
the scheduler managing the unblocking process is currently
in the blocked state, indicating that it is not managing any
processes that are able to run. In this case, forwarding
the unblock event will cause the unblocking process to be
newly considered to be able to run, and thus the scheduler
will move from the blocked state to the ready state, mak-
ing it newly eligible for election. The policy then considers
whether the affected scheduler has higher priority than the
child scheduler managing the running process, if any, and if
so preempts that scheduler by changing its state to ready.
The remainder of the handler simply forwards the event to
the child scheduler managing the unblocking process. This
forwarding is done regardless of the state of the unblocking
process, which is not known to the virtual scheduler. When
the event notification reaches the process scheduler manag-
ing the unblocking process, that scheduler will use its record
of the state of the process to determine the appropriate state
transition.

5. CONSTRAINTS ON SCHEDULER
BEHAVIOR

A Bossa scheduler must provide handlers for the set of event
notifications generated by the target OS kernel and each
such handler must implement state transitions that corre-
spond to the semantics of the associated event. The set of
events and the corresponding allowed process state transi-
tions are specified by an expert in the target OS as a col-
lection of event types. We first describe these process-level
types and then present an algorithm to generate types for
virtual schedulers from this information. The algorithm is
presented informally using an example. More information is
available in the appendix. Event types are used for verifica-
tion and optimization, as described in Section 6.

5.1 Types for process schedulers
The event types provided by the OS expert describe the
required effect of the scheduling hierarchy on process states.
These types thus describe the required behavior of process
schedulers. To be policy independent, types are described in
terms of state classes rather than states. The Bossa compiler
then instantiates these types in terms of the states defined

by a given policy for use in verification and optimization.
In addition to the types, the OS expert describes possible
sequences of events and the set of events that can occur
during interrupts. This information is used to identify the
possible execution paths through the policy and to restrict
the analysis to instantiations that can occur within these
execution paths.

The type for the unblock.preemptive event for the Linux
OS is shown below:

[tgt in BLOCKED] -> [tgt in READY]
[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]
[tgt in RUNNING] -> []
[tgt in READY] -> []

This type consists of four rules describing the state transi-
tions allowed for the unblocking process, referred to as tgt

(target), and in one case for a process p in the RUNNING state
class. In each case, no other state transitions are allowed.
In the first rule, the state of the unblocking process is spec-
ified to change from a state in the BLOCKED state class to a
state in the READY state class, indicating that the process is
newly able to run. The second rule describes preemption;
the transition of the unblocking process is the same as in the
previous rule, but the process in the state in the RUNNING

state class is moved to a state in the READY state class. The
remaining rules indicate that when the target process is not
actually blocked, no state transition is allowed.

5.2 Types for virtual schedulers
The types for process schedulers presented above describe
the allowed effect of each event handler on the states of the
child processes. Analogously, the types for virtual sched-
ulers describe the allowed effect of each event handler on
the states of the child schedulers. When an event notifica-
tion is propagated down the hierarchy, it eventually reaches
a process scheduler, and thus the types for virtual schedulers
must be consistent with the types for process schedulers.

The event types for virtual schedulers are inferred from
the process-level event types provided by the OS expert.
To illustrate some of the issues involved, we consider the
following process-level type rule for the unblock.preemp-

tive event:

[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]

The inference of types for virtual schedulers must account
for the fact that the processes mentioned in a type rule may
be managed by one or more of the child schedulers of the vir-
tual scheduler. Some possibilities are illustrated in Figure 7,
where in the first case the processes p and tgt are both man-
aged by the same process scheduler, while in the other cases
they are managed by different process schedulers. Further-
more, the inference must determine the effect of the state
transitions ultimately carried out at the process level on the
scheduler states of these child schedulers. For example, in
the case where p and tgt are managed by different pro-
cess schedulers the effect of the event on the child scheduler
managing tgt may change its scheduler state from BLOCKED

to READY, if the child scheduler is initially only managing
blocked processes, but may also cause the scheduler state to
remain READY, if the scheduler managing tgt is initially also
managing some processes in the READY state class. These
scenarios are illustrated by the second and third examples
in Figure 7.

VS

R D B

PS1 PS2

R D B R D B

p tgt

tt JJ

�� ?? �� ?? −→

VS

R D B

PS1 PS2

R D B R D B

p,tgt

lllltt JJ

�� ?? �� ??

VS

R D B

PS1 PS2

R D B R D B

p tgt

tt JJ

�� ?? �� ?? −→

VS

R D B

PS1 PS2

R D B R D B

p tgt

llll RRRR

tt JJ

�� ?? �� ??

VS

R D B

PS1 PS2

R D B R D B

p x tgt

tt JJ RRRR

�� ?? �� ?? −→

VS

R D B

PS1 PS2

R D B R D B

p x,tgt

llll RRRR

tt JJ

�� ?? �� ??

Figure 7: The effect of process state transitions as-
sociated with the unblock.preemptive event on the
states associated with the child schedulers of a vir-
tual scheduler. R represents the states of the RUNNING

state class, D represents the states of the READY state
class, B represents the states of the BLOCKED state
class.

The key observation in the inference of virtual scheduler
event types is that a virtual scheduler can only forward an
event to the child scheduler managing the target process or
cause a preempt event notification to be forwarded to the
child scheduler managing the running process. Thus, for a
given process-scheduler type rule, any process that changes
state must be managed by the child scheduler managing the
target process, unless it is the running process and is pre-
empted, in which case it can be managed by either the same
scheduler or a different one. Based on these observations,
the inference algorithm begins by creating a set of possible
configurations, each reflecting a different distribution of the
processes mentioned by a given type rule among the child
schedulers according to these constraints. As an example,
the configurations generated from the above type rule are as
follows:

〈[tgt in BLOCKED], [p in RUNNING], ∅〉
〈[p in RUNNING, tgt in BLOCKED],−, ∅〉

In each configuration, the first component describes the pro-
cesses managed by the scheduler managing the target pro-
cess, the second component describes the processes managed
by the scheduler that is preempted, if any, and the third
component describes any other processes mentioned by the
rule (in our example, there are none):

The next step is to determine the state of each child sched-
uler, before and after the event notification. The state of
the scheduler depends not only on the states of the pro-
cesses mentioned in the type rule, but also on the states of
any other processes that the scheduler might be managing.
From each configuration, the inference algorithm creates a
set of instantiations reflecting the possibility that each state
class that is not constrained by the type rule may or may

not be empty. A few of the instantiations resulting from the
first of the above configurations are as follows:

〈[[] = RUNNING, s1 in READY, tgt in BLOCKED],
[p in RUNNING, s2 in READY, s3 in BLOCKED], ∅〉
〈[[] = RUNNING, [] = READY, tgt in BLOCKED],
[p in RUNNING, s2 in READY, s3 in BLOCKED], ∅〉

The instantiations represent process states on event notifi-
cation. To determine the corresponding output configura-
tions, in each case, the first component is matched against
the complete set of type rules for the event itself, and the
second component, if any, is similarly matched against the
type rule for the preempt event. From the first instantia-
tion above and the type for unblock.preemptive given in
Section 5.1 we obtain the following:

〈[[] = RUNNING, s1 in READY, tgt in BLOCKED]
→ [[] = RUNNING, [tgt,s1] in READY],
[p in RUNNING, s2 in READY, s3 in BLOCKED]
→ [[] = RUNNING, [p,s2] in READY, s3 in BLOCKED], ∅〉

For each of the pairs of input and output configurations,
the output configuration is again instantiated to reflect the
possibility that each state class about which there is no in-
formation may or may not be empty. The following instan-
tiated tuples result from the tuple above, reflecting the fact
that the output configuration of the target component of this
tuple puts no constraint on the BLOCKED state class:

〈[[] = RUNNING, s1 in READY, tgt in BLOCKED]
→ [[] = RUNNING, [tgt,s1] in READY], [] = BLOCKED,
[p in RUNNING, s2 in READY, s3 in BLOCKED]
→ [[] = RUNNING, [p,s2] in READY, s3 in BLOCKED], ∅〉
〈[[] = RUNNING, s1 in READY, tgt in BLOCKED]
→ [[] = RUNNING, [tgt,s1] in READY], s4 in BLOCKED,
[p in RUNNING, s2 in READY, s3 in BLOCKED]
→ [[] = RUNNING, [p,s2] in READY, s3 in BLOCKED], ∅〉

A scheduler state is then computed for each input and corre-
sponding output configuration, giving the effect on a single
child scheduler. The information about the various sched-
ulers is then combined to construct virtual-scheduler event-
type rules. For example, from both of the above tuples, we
obtain the rule:

[p in RUNNING, tgt in READY] -> [[p,tgt] in READY]

The processes named si are not mentioned in the resulting
rule, as they share the same schedulers as the p and tgt

processes.
The complete set of virtual scheduler types inferred from

the process scheduler type rules for unblock.preemptive are
as follows:

[tgt in BLOCKED] -> [tgt in READY]
[tgt in READY] -> [tgt in READY]
[tgt in RUNNING] -> [tgt in READY]
[tgt in RUNNING] -> [tgt in RUNNING]
[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]
[p in RUNNING, tgt in READY] -> [[p,tgt] in READY]

All of the inferred type rules enforce the basic effect of un-
blocking, as indicated by the fact that the child scheduler
managing the target process is not in a state of the BLOCKED

state class at the end of the event handler.

6. VERIFICATION AND OPTIMIZATION
The Bossa compiler first verifies statically that a policy sat-
isfies the event types, and thus the requirements of the tar-
get OS, by analyzing the state transitions performed by the
possible execution paths through the handlers. During the
verification process, information is collected about the possi-
ble states of the values of various process-typed expressions.
The compiler then uses this information to perform some
optimizations during code generation.

6.1 Verification
The purpose of the Bossa verification is to ensure that for
each mapping of processes to states that can occur at run
time, the effect of each event handler is compatible with the
expectations of the target OS. The verification process is ori-
ented toward precision rather than efficiency, as properties
of the domain of scheduling and restrictions in the Bossa
language, such as the absence of recursion, imply that event
handlers have a simple structure. Accordingly, several kinds
of information are stored in the representations of processes
and states, and the analysis avoids introducing approxima-
tions, when possible. We consider a simplified version of
the language in which the only values are booleans and pro-
cesses and there are no assignments. This language and the
verification process have been described formally elsewhere
for process schedulers [8]. Virtual schedulers do not intro-
duce any new issues. We thus give only an overview and an
example here.

The verifier relies on an analysis that proceeds by ab-
stract interpretation of the handler code. Abstract values
are used to represent the individual processes and the sets
of processes in each state. The abstract representation of
a process consists of information about the process name,
such as tgt for the target process, and the starting state of
the process, when this information is known. The abstract
representation (contents description) associated with a state
is [], if it is known that there are no processes in the state,
or a pair 〈must,may〉, otherwise. In the latter case, must
is a set of abstract processes describing the set of processes
that are known to be in the given state and may is a set of
abstract processes describing the set of processes that may
be in the given state. This information allows the analy-
sis to determine the current state of specific processes, such
as the target process, and the starting and ending states of
arbitrary processes that change state in the course of the
handler.

We present the analysis rules for only two constructs, the
boolean expression empty(state) and the statement if exp
then stmt1 else stmt2. These constructs are sufficient to
illustrate the main points of the analysis. The expression
empty(state) is true if and only if there does not exist any
process in the state state. The analysis rules are as follows:

Σ(state) = []
Φ, Σ `b empty(state) : true

(1)

Σ(state) = 〈{pd1, . . . , pdn}, may〉 n > 0
Φ,Σ `b empty(state) : false

(2)

Σ(state) = 〈∅, may〉
Φ,Σ `b empty(state) : 〈Σ[state 7→ []], add(tmay, state, Σ)〉

(3)

The expression is analyzed with respect to a variable en-
vironment Φ mapping each variable to an abstract process
describing its value, and a state environment Σ, mapping

each state to a contents description. The result of the anal-
ysis is a boolean value, if one can be determined, and oth-
erwise it is a pair of state environments, representing the
current state environment extended with any information
that can be inferred from the truth or falsity of the test ex-
pression, respectively. If the contents description associated
with state is [], then the result of empty(state) is known
to be true (rule (1)). Similarly, if the set of processes that
must be in state is known to be non-empty, then the result
of the test is known to be false (rule (2)). If neither of these
conditions holds, then the value of the test is unknown (rule
(3)). The result is one state environment in which [] is as-
sociated with state and another state environment in which
the information associated with the state is updated such
that its “must” set contains an upper bound of its current
“may” information. This approach is analogous to the use of
positive and negative information in partial evaluation [6].

The analysis of a conditional statement uses the following
rules:

Φ, Σ `b bexp : true Φ,Σ `s stmt1 : S

Φ,Σ `s if (bexp) stmt1 else stmt2 : S
(4)

Φ,Σ `b bexp : false Φ, Σ `s stmt2 : S

Φ,Σ `s if (bexp) stmt1 else stmt2 : S
(5)

Φ,Σ `b bexp : 〈true env, false env〉
Φ, true env `s stmt1 : S1 Φ, false env `s stmt2 : S2

Φ,Σ `s if (bexp) stmt1 else stmt2 : S1 ∪ S2
(6)

These rules exploit the precise information produced by the
analysis of a boolean expression such as empty(state). If the
result of the analysis of the boolean expression is a boolean
value, only the corresponding branch of the conditional is
subsequently analyzed (rules (4) and (5)). On the other
hand, if the result of the analysis of the boolean expression
is a pair of state environments, then the component of the
pair representing the case where the test is true is used in
the analysis of the “then” branch, and the component of the
pair representing the case where the test is false is used in
the analysis of the “else” branch (rule (6)). The result of the
analysis of each branch is a set of state environments. When
both branches are analyzed, the result of the analysis of the
conditional statement is the union of the two sets of resulting
state environments. The rest of the handler is then analyzed
with respect to each of these environments individually. The
analysis thus follows a “meet over all paths” strategy [9].

As an example, we consider the following simplified ver-
sion of the unblock.preemptive handler of the Fixed-Priority
policy:

On unblock.preemptive {
if (next(e.target) in blocked) {

if (empty(running)) { }
else running => ready;

}
next(e.target) => forwardImmediate();

}

analyzed with respect to an empty variable environment Φ
and the following state environment Σ:

{running 7→ 〈{(x, running)}, {(x, running)}〉,
ready 7→ 〈∅, {(x, ready)}〉,
blocked 7→ 〈{(tgt, blocked)}, {(x, blocked)}〉}

For conciseness, this state environment only includes the
states running, ready, and blocked, as these are the only

states that are relevant to the example. The must informa-
tion in this state environment indicates that it is known that
there is a child scheduler in the running state, that it is un-
known whether there are any child schedulers in the ready

state, and that the target process is known to be managed
by a child scheduler in the blocked state.

The analysis begins with the test expression next(e.tar-

get) in blocked. Because the must information of the
blocked state indicates that the child scheduler managing
the target process is indeed in this state, the analysis of this
expression returns true, and thus, by rule (4), the analy-
sis of the enclosing conditional statement considers only the
“then” branch. The analysis next considers the test expres-
sion empty(running). By rule (2), the result of the analysis
is false, because the must information of the running state
is non-empty. Thus, by rule (5) for conditional statements,
only the “else” branch is analyzed. This branch changes the
state of the scheduler in the running state to ready, pro-
ducing the following set of state environments as the result
of analyzing the inner conditional statement:

{{running 7→ [],
ready 7→ 〈{(x, running)}, {(x, running), (x, ready)}〉,
blocked 7→ 〈{(tgt, blocked)}, {(x, blocked)}〉}}

The handler next forwards the event to the child sched-
uler managing the target process. To determine the result-
ing state of this child scheduler, the analysis identifies type
rules for the given event that are compatible with the cur-
rent state environment. According to the set of type rules
for unblock.preemptive inferred in Section 5.2, the sched-
uler managing the target process ends up in a state of the
READY state class. The Fixed-Priority policy defines two such
states, ready and yield, and this scheduler is not currently
in either of them. Thus, the public state is chosen, which is
ready. The result of updating the set of state environments
according to this state transition is thus:

{{running 7→ [],
ready 7→ 〈{(tgt, blocked), (x, running)},

{(tgt, blocked), (x, running), (x, ready)}〉,
blocked 7→ 〈∅, {(x, blocked)}〉}}

which is the result of analyzing the handler. This combina-
tion of initial state environment and final state environment
is compatible with the type rule:

[p in RUNNING, tgt in BLOCKED] -> [[p,tgt] in READY]

inferred in Section 5.2. Analysis with respect to other state
environments compatible with the input configurations of
the type rules proceeds similarly.

6.2 Optimization
The main optimizations performed by the Bossa compiler
are in the implementation of the state transition operations
and the specialization of sequences of events. These opti-
mizations are driven by the state information collected dur-
ing the analysis. The optimizations apply to both process
schedulers and virtual schedulers.

A state transition operation exp => state removes the giv-
en process or scheduler from the data structure associated
with its current state and adds it to the data structure as-
sociated with its new state. As shown in the examples of
the Linux policy (Figure 5) and the Fixed-Priority policy
(Figure 6), a state can be implemented as either a queue or

a process/scheduler variable (an array is also possible), and
thus the exact implementation of a state transition opera-
tion depends on the kinds of data structures associated with
the states involved. The Bossa syntax makes the destination
state explicit, but the source state is determined from the
current state of the affected process or scheduler, exp. For
each state-transition operation, the analysis collects the set
of possible source states, and specialized code is generated
accordingly.

Compilation of the event-forwarding state-transition op-
eration exp => forwardImmediate() used in virtual sched-
ulers is more complex. Unlike exp => state, this statement
does not indicate the destination state. Indeed, the desti-
nation state depends on the scheduler state returned by the
child scheduler at run time. Nevertheless, the types can be
used to restrict the set of states that must be taken into
account. For example, when forwarding of the event oc-
curs in an unblock.preemptive handler, the types inferred
in Section 5.2 indicate that the generated code need only
take into account the possibility that the resulting scheduler
state is RUNNING or READY, but not BLOCKED. This optimiza-
tion reduces the number of tests performed by the virtual
scheduler.

A Bossa policy specifies a disjoint set of scheduling event
handlers, but in the kernel, some sequences of events can oc-
cur atomically. For example, when a process blocks, another
process is elected immediately. The Bossa compiler creates
specialized handlers based on information in the event types
about such atomic sequences. The sequence of handlers is
analyzed as a single unit, implying that information inferred
during the analysis of one handler is propagated to the anal-
ysis of subsequent ones in the sequence. This information
may imply that some tests on process states are always true
or always false. The analysis keeps track of such test ex-
pressions, which are removed during code generation, thus
creating a handler that is specialized to the given event se-
quence. This approach creates an efficient implementation,
without requiring the programmer to duplicate code, create
optimized instances, or even be aware of the relevant kernel
properties.

7. EVALUATION
We first present a micro-benchmark that measures the over-
head introduced by the use of a scheduling hierarchy, and
then assess the performance of a scheduling hierarchy in the
context of a video player and a Web server.

Micro-benchmark. A scheduling hierarchy propagates e-
vent notifications from the root of the hierarchy to the pro-
cess scheduler managing the target process. To assess the
cost of these layers of communication, we consider hierar-
chies having the form of a sequence of virtual schedulers with
a single process scheduler as the leaf. Each virtual sched-
uler is a null scheduler that simply forwards every event to
its only child. As a test application, we use the lat ctx

benchmark,3 which passes a token around a ring of pro-
cesses, each of which traverses an array of some fixed size.
Because this application performs so little computation be-
tween context switches, it represents a worst case for sched-
uler performance. Figure 8 shows the overhead introduced
in this benchmark for between 1 and 3 virtual schedulers,

3http://www.bitmover.com/lmbench/

Min Max

Linux: Player only 0.005 0.048

EDF: Player only 0.019 0.024

Linux: Player, make 0.009 22.683

EDF: Player, make 0.017 0.018

Table 1: Mplayer: distance between video and au-
dio.

which is typically the limit of what is needed in practice.
The cost per added virtual scheduler increases roughly lin-
early. The Fixed-Priority and Proportion virtual schedulers
used in our example hierarchy (Figure 1) are only slightly
more complex than the null scheduler considered here, and
have similar performance.

MPEG video display with reservations. On a lightly
loaded system, a video player can achieve the frame rate
required by the video by sleeping for an appropriate interval
after processing each frame. On a heavily loaded system,
however, the player needs to reserve a portion of CPU time
within each interval, to ensure not only that it receives ade-
quate access to the CPU but also that it receives this access
at the appropriate rate.

We consider the use of the video player mplayer4 with a
scheduling hierarchy consisting of a Fixed-Priority scheduler
at the root, and the Linux scheduler and an Earliest Dead-
line First (EDF) reservation-based scheduler at the leaves.
The Linux scheduler has lower priority than the EDF sched-
uler. Only the video player runs on the EDF scheduler. We
slightly modified mplayer to construct the hierarchy, attach
itself to the EDF scheduler, and yield at the end of process-
ing each frame. Table 1 shows the performance of the player
using Bossa on the Matrix Reloaded trailer with and with-
out reservations when competing with Linux kernel compi-
lation. The performance is measured as the difference in the
percentage of the complete audio and video that has been
treated so far. Under the Linux scheduling policy, the video
falls far behind the audio in the presence of kernel compila-
tion. With EDF, the player maintains good performance.

Web server isolation. The use of a scheduling hierarchy al-
lows running multiple web servers in isolation, so that if one
is under attack or flooded, the others still react with guar-
anteed performance. We have implemented this approach
using a Proportion virtual scheduler controlling two Linux
schedulers each running a different Apache server. One is
allocated 75% of the CPU, while the other is allocated the
remaining 25%. As shown in Table 2, when flooding one
server, the proportion of pages served by each of the two
servers nearly matches its CPU allocation. When flooding
both servers simultaneously by two different clients, the 25%
server serves a little bit more than its allocation, resulting
in 107% of the pages served by a single server.

8. RELATED WORK
Several scheduling frameworks allow more than one sched-
uler to coexist, with the choice between them made us-
ing a built-in fixed-priority strategy. Vassal allows a user-
defined scheduler to be loaded into Windows, where it is

4http://www.mplayerhq.hu

Request rate % of Apache
(req/s) alone

Apache alone 975 100%

One server flooded
Apache 75%/25% 732/253 75%/25%

Both servers flooded
Apache 75%/25% 722/321 75%/32%

Table 2: Apache performance (two servers).

given priority over the standard Windows scheduler [3]. The
S.Ha.R.K. kernel has no fixed scheduler and instead allows
the loading of scheduling modules [5]. Neither framework
addresses the need to specify other policies for choosing be-
tween multiple schedulers. Furthermore, neither approach
provides for verification of scheduler behavior.

The work closest to ours is the HLS framework for devel-
oping scheduling hierarchies [10]. HLS provides an API for
implementing new schedulers, analogous to Bossa’s set of
event notifications, but does not provide a DSL or any veri-
fication of scheduler behavior. Thus, programming a sched-
uler remains error-prone and requires a deep knowledge of
the behavior of the target OS. In addition to the problem
of implementing a hierarchy, HLS considers the problem of
reasoning about a composition of schedulers [11]. Based on
declarations describing the behavior of individual scheduling
policies, HLS infers guarantees about the scheduling behav-
ior of a hierarchy. We are considering how to incorporate
this reasoning system into Bossa.

CPU inheritance scheduling is an approach in which ordi-
nary threads act as schedulers by donating their CPU time
to other processes [4]. This approach is very flexible, but
again there is no verification of scheduler behavior.

9. CONCLUSION
In this paper, we have presented aspects of the Bossa schedul-
ing framework that allow the construction and manipulation
of a scheduling hierarchy. Key features of this approach are
the use of a DSL for the programming of schedulers and the
use of a type system for specifying requirements on sched-
uler behavior. The DSL simplifies programming, and more
crucially allows static verification that a scheduler satisfies
the required types.

The specific focus of this paper is on generalizing ideas
that were developed in the context of individual process
schedulers to the context of a hierarchy of schedulers. We
conjecture that the approach, particularly the work on the
type system, can be used in other contexts to generalize a
class of policies that are usually presented in a monolithic
way to a hierarchical structure. Currently, we are consid-
ering the problem of managing multiple OS resources with
the goal of allowing user-level management of energy usage.
We will consider how the approach developed here can be
applied to this setting.

Acknowledgments
We thank the PEPM 2004 organizers for the invitation to
present this work, and John Hatcliff, Anne-Françoise Le
Meur, and Mads Sig Ager for comments on a draft of this
paper.

array size (KB)
processes

0
2

4 8 163264 0
4

4 8 163264 0
8

4 8 163264 0
16

4 8 163264 0
24

4 8 163264 0
32

4 8 163264 0
64

4 8 163264 0
96

4 8 163264

140%

120%

100%

80%

3 VSes/Linux only
2 VSes/Linux only
1 VS/Linux only

Figure 8: Virtual scheduler overhead in lat ctx.

Availability
Bossa and all material described in this paper are available
at the Bossa web site: http://www.emn.fr/x-info/bossa/

10. REFERENCES
[1] R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and

A.-F. Le Meur. On the automatic evolution of an OS
kernel using temporal logic and AOP. In Proceedings
of the 18th IEEE International Conference on
Automated Software Engineering (ASE 2003), pages
196–204, Montreal, Canada, Oct. 2003. IEEE.

[2] L. P. Barreto and G. Muller. Bossa: a language-based
approach to the design of real-time schedulers. In 10th
International Conference on Real-Time Systems
(RTS’2002), pages 19–31, Paris, France, Mar. 2002.

[3] G. M. Candea and M. B. Jones. Vassal: Loadable
scheduler support for multi-policy scheduling. In
Proceedings of the 2nd USENIX Windows NT
Symposium, pages 157–166, Seattle, WA, Aug. 1998.

[4] B. Ford and S. Susarla. CPU inheritance scheduling.
In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation
(OSDI’96), pages 91–105, Seattle, WA, Oct. 1996.

[5] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo. A new
kernel approach for modular real-time systems
development. In Proceedings of the 13th IEEE
Euromicro Conference on Real-Time Systems, June
2001.

[6] R. Glück and A. V. Klimov. Occam’s razor in
metacomputation: the notion of a perfect process tree.
In P. Cousot, M. Falaschi, G. Filé, and A. Rauzy,
editors, Static Analysis. Proceedings, volume 724,
pages 112–123. Springer-Verlag, 1993.

[7] J. Lawall, G. Muller, and L. P. Barreto. Capturing OS
expertise in a modular type system: the Bossa
experience. In ACM SIGOPS European Workshop
2002 (EW’2002), pages 54–61, Saint-Emilion, France,
Sept. 2002.

[8] J. L. Lawall, A.-F. Le Meur, and G. Muller. On
designing a target-independent DSL for safe OS
process-scheduling components. In Third International
Conference on Generative Programming and
Component Engineering (GPCE’04), Oct. 2004. To
appear.

[9] F. Nielson. A denotational framework for data flow
analysis. Acta Informatica, 18:265–287, 1982.

[10] J. Regehr. Using Hierarchical Scheduling to Support
Soft Real-Time Applications on General-Purpose
Operating Systems. PhD thesis, University of Virginia,
2001.

[11] J. Regehr and J. A. Stankovic. HLS: A framework for
composing soft real-time schedulers. In Proceedings of
the 22nd IEEE Real-Time Systems Symposium (RTSS
2001), pages 3–14, London, UK, Dec. 2001.

APPENDIX

A. INFERRING VIRTUAL-SCHEDULER
EVENT TYPES

The goal of the inference algorithm is to derive event types
for virtual schedulers from the process-level event types pro-
vided by the OS expert. A type consists of a collection of
type rules i → o, defined as follows:

Input configuration: i ::= [in1, ..., inn]
Input component: in ::= [p1,...,pn] in cin | [] = cin

Input state classes cin ::= RUNNING | READY | BLOCKED |
NOWHERE

Output configuration: o ::= [out1, ..., outn]
Output component: out ::= [p1,...,pn] in cout |

[p1,...,pn] in cout! | cout!
Output state classes cout ::= RUNNING | READY | BLOCKED |

TERMINATED
Process names: p ::= src | tgt | p1 | . . . | pn

Among the input components, [p1,...,pn] in cin indicates
that the processes represented by p1, . . . , pn are known to
be in some states of the state class cin and, [] = cin means
that there is no process in any state of the state class cin.
Among the output components, [p1,...,pn] in cout means
that the processes represented by p1, . . . , pn are required
to be in states of the state class cout, [p1,...,pn] in cout!
means the same but that additionally other processes are
allowed to change state within the state class cout, and cout!

means that processes are only allowed to change state within
the state class cout. An input or output configuration con-
tains at most one entry for each allowed state class.

The starting point of the algorithm is a type, {i1 →
o1, . . . , in → on}. The algorithm is applied to each rule
i → o in this type, individually. Throughout, we abbreviate
RUNNING as R, READY as D, BLOCKED as B, NOWHERE as N ,
and TERMINATED as T . The presentation of the algorithm is
somewhat informal. The algorithm has been implemented
as part of the Bossa framework.

A.1 Distributing processes among the child
schedulers

The first step of the algorithm is to distribute the processes
mentioned in a type rule among the child schedulers of a
virtual scheduler. Two child schedulers are distinguished:
the child scheduler target managing the target process to
which the current event must be forwarded and the child
scheduler preempt, if any, managing a process that is to be
preempted. Other processes are distributed among some set
of child schedulers other.

Based on a given type rule i → o, a preprocessing step
constructs the set of states that are initially known to be
empty, the set of processes (at most one) known to be in
the RUNNING state class, and an environment mapping each
process named by i to its input and output state classes:

empties = {c | [] = c ∈ i}
in running = {p | [p] in RUNNING ∈ i}
env = {(p, (ic, oc)) | p ∈ i(ic) ∧

(p ∈ o(oc) ∨ (ic = oc ∧ ∀c.p 6∈ o(c)))}

In the definition of env and subsequently, we define i(c) as ∅,
if either [] = c is part of i or there is no information about
c in i, and as {p1, . . . , pn} if [p1,...,pn] in cin is part of
i. o(c) is defined similarly.

The set distrib of all possible distributions is defined as
follows:

distrib =
{〈target, preempt, other〉 |

〈T, P,O〉 ∈ partition(domain(env), 3) ∧
target =

{(c, ps) | c ∈ {R, D,B, N} ∧
ps = check(c, {p | p ∈ T ∧ env(p) = (c,)})} ∧

preempt′ =
{(c, ps) | c ∈ {R, D,B, N} ∧

ps = check(c, {p | p ∈ P ∧ c = R ∧
env(p) = (R, D)})} ∧

preempt = check preempt(preempt′)
O = partition(O, |O |)∧
other =

{{(c, ps) | c ∈ {R, D, B,N} ∧
ps = check(c, {p | p ∈ O′ ∧ env(p) = (c, c)})} |

O′ ∈ O} ∧
tgt ∈

S

range(target) ∧
S

range(target) ∪
S

range(preempt) ∪
S

{
S

range(O) | O ∈ other} = domain(env)}

The function partition(s, n) partitions the set s into a se-
quence of n possibly empty subsets. The definition of dis-
trib uses the functions check and check preempt, defined as
follows:

check(c, ps) = [], if c ∈ empties
[], if c = R ∧ ps 6= in running
ps, otherwise

check preempt(env) = −, if env = ∅
env, otherwise

The function check(c, ps) discards ps if the state class c

is known to be empty, converts ∅ to [] when some process
(managed by some other scheduler) is known to be in the
RUNNING state class, and otherwise returns ps unchanged.
The function check preempt(env) converts the information
about preempt into the invalid marker “−” in the case where
there is no preempted process.

A.2 Instantiation
The next step is to instantiate each state class about which

there is no information as either empty or not empty. The
result is the set instantiates, defined below. In the compu-
tation of instantiates, the function new() generates a fresh
process name. The predicate fresh(p), used in Section A.4,
returns true only for process names generated using this
function.

instantiate(s) =
{{(R, psR), (D, psD), (B, psB), (N, psN)} |
psR ∈ instantiate′(R, s) ∧ psD ∈ instantiate′(D, s) ∧
psB ∈ instantiate′(B, s) ∧ psN ∈ instantiate′(N, s)}

instantiate′(c, s) = {[], new()}, if s(c) = ∅
{s(c)}, otherwise

instantiations =
{〈target, preempt, other〉 |

〈T,P,O〉 ∈ distrib ∧
target ∈ instantiate(T) ∧
(P = − ⇒ preempt = −) ∧
(P 6= − ⇒ preempt ∈ instantiate(P)) ∧
other = {o′ | o ∈ O ∧ o′ ∈ instantiate(o)}

A.3 Computing output configurations
For each instantiation, 〈target, preempt, other〉, we next com-
pute output configurations resulting from forwarding the
current event notification to the scheduler represented by
target and forwarding a preempt notification to the sched-
uler represented by preempt. For this, we consider the con-
figuration (target or preempt) and each of the type rules. For
conciseness, we only present the computation of output con-
figurations from a single configuration config and type rule
i → o. The result is a set of output configurations, corre-
sponding to the different ways that process names in config
can be matched to the process names in i.

In the first step, we create a set of environments, each
mapping the process names in config in some way to the
process names in i for which there is a state change between i

and o. The names src and tgt can only be matched against
themselves. For the other process names, we consider all
permutations. Π takes the cross product of a sequence of
values.

moves(i, o) = {p | ∃c ∈ {R, D,B, N}.(p ∈ i(c) ∧
∃c′ ∈ {R, D,B, N}.(p ∈ o(c′) ∧ c 6= c′))}

create entry(c) =
{∅}, if config(c) = [] ∧ (i(c) = [] ∨ i(c) = ∅)
{(pc1 , pi1), . . . , (pcn , pin) | 〈pc1 , . . . , pcn〉 = config(c) ∧
〈pi1 , . . . , pin〉 = permutation(relevant, n) ∧
∀j.pcj

= src ⇔ pij
= src ∧

∀j.pcj
= tgt ⇔ pij

= tgt},
if n ≥|relevant |, where n =|config(c) | and

relevant = {p | p ∈ moves ∧ p ∈ i(c)}
∅, otherwise

envs = {r ∪ d ∪ b ∪ n |
〈r, d, b, n〉 ∈ Π〈create entry(c) | c ∈ 〈R, D, B, N〉〉}

In the second step, we use each environment in envs to
modify the configuration config according to the transitions
described by the rule i → o. We present this operation for
the case of a single environment. To simplify the presenta-
tion, we consider the environment to be a list (as in SML).
For a given input configuration config, a type i → o, and
a corresponding environment env a set of output configu-
rations are generated using update(config, o, env), defined as
follows:

update(config, o, []) = instantiate(config)
update(config, o, (pc, pi) :: env) =

let cold = find(pc, config)
cnew = find(pi, o) in

update(add(pc, cnew, rem(pc, cold, config)), o, env)

The functions add and rem add and remove a process to and
from a state class, respectively. If cold is R, then rem updates
the information about this state class with [], as there can
have been at most one running process. Otherwise, rem

simply removes the process pc from the information about
the state class cold. Multiple configurations are generated
because of the application of instantiate to the final result.

A.4 Constructing type rules
For each element 〈target, preempt, other〉 of instantiations,
we use update to create corresponding output configurations
for the child schedulers represented by target and preempt;
the output configuration for each element of other is just the
element of other itself, as no state transitions are allowed
for these schedulers. Combining target, preempt, and the
elements of other each with some possible output configura-
tion gives a set of pairs of input and output configurations
{(s1

in
, s1out

), . . . , (sn
in

, snout
)}. For each s ∈ {s1

in
, . . .},

we compute a process name as follows:

proc nm(s) =
src-tgt, if ∃c.src ∈ s(c) ∧ tgt ∈ s(c)
src, if ∃c.src ∈ s(c)
tgt, if ∃c.tgt ∈ s(c)
concat({p | ∃c.tgt ∈ s(c) ∧ ¬fresh(p)}), otherwise

For each s ∈ {s1
in

, s1out
, . . .}, we also compute a state class

as follows:

state class(s) =
R, if s(R) 6= []
D, if s(R) = [] ∧ s(D) 6= []
B, otherwise

This computation is identical to the scheduler state compu-
tation described in Section 3.2.

The type rule corresponding to set of pairs of input and
output configurations {(s1

in
, s1out

), . . . , (sn
in

, snout
)} is de-

fined as follows:

{(R, psR
in

), (D, psD
in

), (B, psB
in

)} →

{(R, psRout
), (D, psDout

), (B, psBout
)}

For this, we first compute:

∀c ∈ {R, D,B}.
ps′

c
in

= {p | ∃j.p = proc nm(sj
in

) ∧ c = state class(sj
in

)}

ps′

cout
= {p | ∃j.p = proc nm(sj

in
) ∧ c = state class(sjout

)}

Based on this information, we then compute psc
in

and pscout
,

for each state class c. For the inputs:

psc
in

= [], if c ∈ empties
ps′

c
in

, otherwise

For the output of the RUNNING state class:

psRout
= [], if R ∈ empties ∧ ps′

Rout
= ∅

[], if is running 6= ∅ ∧ ps′

Rout
= ∅

ps′

Rout
, otherwise

The first two cases show that the absence of information
about the schedulers in a given state class in the output con-
figuration is not sufficient to conclude that the state class
is empty. This is because there could be some child sched-
ulers that are not represented among the s1, . . . , sn, and
these child schedulers may be in a state of the given state
class. If the state class is additionally known to be empty
in the input configuration i of the type rule, however, we
can conclude that the state class is empty at the end of the
handler, because such extra child schedulers cannot change
state class. For the RUNNING class, there is an additional
case, represented by the second rule, where we can conclude
that psRout

= []. In this rule, the conditions imply that

there was originally a process in the state of the RUNNING

state class, but this process has moved to a state of another
state class, and thus the RUNNING state class is now known
to be empty.

Finally, for the output of the READY or BLOCKED state class,
i.e., where c ∈ {D, B}, we obtain:

pscout
= [], if c ∈ empties ∧ ps′

cout
= ∅

ps′

cout
, otherwise

