
Capturing OS Expertise in an Event Type System:
the Bossa Experience

Julia L. Lawall
DIKU, University of Copenhagen
2100 Copenhagen Ø, Denmark

julia@diku.dk

Gilles Muller
Ecole des Mines de Nantes

44307 Nantes Cedex 3, France
Gilles.Muller@inria.fr

Luciano Porto Barreto
COMPOSE group, INRIA/LaBRI

33402 Talence Cedex, France
barreto@labri.fr

Abstract

Emerging applications have increasingly specialized
scheduling requirements. Changing the scheduling pol-
icy of an existing OS is, however, often difficult because
scheduling code is typically deeply intertwined with the rest
of the kernel. We have recently introduced the Bossa frame-
work to facilitate the implementation and integration of new
scheduling policies. While the use of Bossa simplifes the
problem of implementing a new scheduler, knowledge of the
control and data flow through the scheduling actions of the
kernel is still needed to ensure that the behavior of the pro-
vided scheduling policy matches kernel expectations. In this
paper, we propose a modular type system that provides a
high-level characterization of the aspects of kernel behav-
ior that affect the correctness of a scheduling policy. These
types guide policy development and are linked with the com-
piler to enable static verification of correctness properties.

1. Introduction

The need for application-specific scheduling strategies
is now well recognized in the OS community, as is demon-
strated by the number of recent studies in this area [1, 6, 11,
14, 16, 18, 20]. Nevertheless, developing a new schedul-
ing policy and integrating it into an existing OS is complex,
because it requires understanding the (often implicit) con-
ventions used by the OS implementation. One technique
that can address this issue is the use of a framework to
structure the implementation of a scheduler and make pre-
cise its interface with the kernel. Another technique is the
use of adomain-specific language (DSL) for the develop-
ment of new policies. A DSL is a programming language
providing high-level abstractions appropriate to a given do-
main. Expertise captured in the language allows policies to
be expressed in an intuitive and high-level manner, permits
verification, and allows generation of efficient code that is

automatically integrated in the target system. DSLs have
demonstrated their interest in a variety of OS subsystems
such as network protocols [19], memory coherency proto-
cols [7] and drivers [13].

We have recently introduced the Bossa event-based
framework for implementing schedulers [3]. The frame-
work includes a DSL for writing scheduling policies. In
the Bossa framework, each scheduling-related action in the
kernel, referred to as ascheduling point, is replaced by the
notification of a Bossa event. A scheduling policy is im-
plemented as a collection of event handlers that are written
in the Bossa DSL and translated to a C file by a dedicated
compiler. The use of the high-level scheduling abstractions
built into the Bossa DSL permits scheduling-specific verifi-
cations and optimizations.

Correctness of the Bossa implementation of a scheduling
policy requires that the definition of each event handler be
consistent with the expectations of the corresponding kernel
scheduling points. Because kernel properties vary from OS
to OS, knowledge of these expectations cannot be simply
built into the Bossa compiler. In this paper, we propose to
describe OS behavior using a collection ofevent types that
describe the possible process states at each scheduling point
and the corresponding expected effect of each event notifi-
cation. Event types are written by an expert in the target
OS. They are provided to the policy developer to guide pol-
icy design and implementation, and linked with the Bossa
compiler to produce a compiler specialized to a particular
OS. This specialized compiler uses knowledge of the DSL
abstractions and the event types to check that the handlers
of the implementation of a scheduling policy are consistent
with kernel expectations.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the Bossa framework and DSL. Section 3
presents the use of event types to model OS behavior. Sec-
tion 4 assesses the impact of event types on policy develop-
ment and optimization. Finally, Section 5 considers related
work and Section 6 concludes. We use the Linux 2.2 kernel
and its scheduling policy as examples throughout the paper.



Bossa

RTS bossa.schedule

Scheduling

policy

Standard
kernel
with

Bossa
events

events
scheduler state

event

elected process

Figure 1. Bossa architecture

2. Bossa

We first present the Bossa framework as a whole, and
then focus on the Bossa DSL, which is used to implement
new scheduling policies.

2.1. The Bossa framework

The goal of the Bossa framework is to separate the im-
plementation of the scheduler from the rest of the kernel,
so that the scheduling policy can easily be changed at the
time of kernel recompilation. The Bossa framework re-
places scheduling actions in the kernel, such as the mod-
ifying of a process state or the electing of a new process,
by Bossa event notifications. Events notifications are pro-
cessed by the Bossa run-time system (RTS), which invokes
the appropriate handler defined by the scheduling policy.
Bossa events are organized into a hierarchy, according to
the function and source of the event. A policy can pro-
vide a single event handler for all events related to a par-
ticular function, such as ablock.* handler that applies
to all blocking events, or handlers for specific events, such
as blocking when waiting for a file or memory page. The
selected handler returns the state of the scheduler, indicat-
ing whether there is a running process, or there are ready
processes available. This information is used at the next
bossa.schedule event notification: The RTS only in-
vokes thebossa.schedule handler of the policy if the
current scheduler state indicates that there is no running pro-
cess and a ready process is available. Otherwise if there is a
running process, the RTS allows it to continue, and if there
are no running or ready processes, the RTS runs the kernel
idle loop.

The RTS is fixed and provided by the framework. The
scheduling policy is provided by the policy developer, and
implemented using the Bossa DSL. Both the RTS and the
compiled scheduling policy are integrated into the kernel.
Our performance results, reported in detail elsewhere [4],
typically show no penalty for the use of Bossa, on both
standard OS benchmarks and realistic applications such as
compilation of the Linux kernel.

2.2. The Bossa DSL

A Bossa scheduling policy declares: (i) a collection of
scheduling-related structures to be used by the policy, (ii) a
set of event handlers, and (iii) a set of interface functions, al-
lowing users to interact with the scheduler. Figure 2 shows
some of the declarations made by the Bossa implementa-
tion of the Linux 2.2 policy. Theprocess declaration lists
the policy-specific attributes associated with each process.
As reflected by thepolicy field, the Linux 2.2 schedul-
ing policy manages FIFO and round-robin real-time pro-
cesses, as well as non-real-time processes. The other fields
of the process structure are used to determine the current
priority of the associated process. Thestates declaration
lists the sets of states that are manipulated by the schedul-
ing policy: running, ready, yield, blocked, and
terminated. Each state is described by a class, which
indicates the schedulability of processes in the state. The
state in theRUNNING class contains the currently running
process. The states in theREADY class contain processes
that are eligible to be elected at the next context switch.
The states in theBLOCKED class contain processes that are
not eligible to be elected at the next context switch. The
states in theTERMINATED class represent terminating, and
thus no longer schedulable, processes. Each state is also
associated with a data structure: either a process variable
(process) or a queue (queue).1 OneREADY state is
designated assorted; only processes in this state can be
elected. Finally, theordering criteria declaration
specifies how the relative priority of processes is computed.

Figure 3 shows the definitions of several event han-
dlers of the Linux 2.2 policy: system.clocktick,
block.*, and unblock.*. The effect of thesys-
tem.clocktick handler depends on whether the target
process is a real-time process, and if so, on the process’s
real-time policy. A clock tick has no effect on a FIFO real-
time process. If a non-FIFO process has used up its ticks,
it is moved to either theready queue or theexpired
queue. Otherwise, the handler decrements the number of
ticks remaining. Theblock.* handler moves the target
process to theblocked queue. Theunblock.* handler
moves the target process from theblocked queue to the
ready queue, if the target process is indeed blocked.

2.3. Assessment

The use of the Bossa framework isolates all policy-
specific scheduling actions into a single file implementing
a well-defined interface, thus simplifying understanding of
the policy as a whole. The use of the Bossa DSL further
permits the implementation of the policy to be expressed in

1No data structure is associated withterminated, as terminating
processes need not be accounted for by the scheduler.



type policy_t =
enum {SCHED_FIFO, SCHED_RR, SCHED_OTHER};

process = {
policy_t policy;
int rt_priority;
time priority;
time ticks;
system struct ctx mm;

}

states = {
RUNNING running : process,

previous old_running;
READY ready : sorted queue;
READY expired : queue;
BLOCKED yield : process;
BLOCKED blocked : queue;
TERMINATED terminated;

}

ordering_criteria = {
highest rt_priority, highest ticks,
highest ((mm == old_running.mm) ? 1:0)

}

Figure 2. Declarations of the Linux 2.2
scheduling policy

a concise and high-level manner. The approach facilitates
policy evolution, because the Bossa DSL compiler ensures
the consistency of the various parts of the scheduling pol-
icy. Nevertheless, the framework and the DSL alone are not
sufficient to ensure that the behavior of a given scheduling
policy matches kernel expectations.

3. Modeling OS behavior

To ensure that the event handlers of a scheduling pol-
icy are consistent with the kernel behavior, the DSL com-
piler must be aware of the control and data flow through the
scheduling points in the kernel. To provide this information,
our description of OS behavior consists of two parts: a col-
lection ofevent sequences that describe possible sequences
of Bossa events, and a collection ofevent types that describe
possible inputs and corresponding outputs for each schedul-
ing event handler. These are interdependent, in that the pro-
vided event types must describe a behavior for all inputs
that can occur along control paths allowed by the event se-
quences. We first present event sequences and event types,
and then show how this information is used in the Bossa
DSL compiler.

On system.clocktick {
if (running.policy != SCHED_FIFO) {
if (running.ticks == 0) {

running.ticks = running.priority;
if (running.policy == SCHED_RR) {

running => ready;
}
else {

running => expired;
}

}
else {

running.ticks--;
}

}
}

On block.* {
e.target => blocked;

}

On unblock.* {
if (e.target in blocked) {
e.target => ready;

}
}

Figure 3. Selected event handlers of the Linux
2.2 policy

3.1. Event sequences

Linux 2.2 kernel code exhibits a form of pseudo-
parallelism, in that execution of a system call by an appli-
cation can be interrupted at any point by execution of inter-
rupt handlers. We use automata to describe the sequences
of events explicitly notified during the treatment of a system
call and during the treatment of an interrupt, and then con-
sider the possible interactions between the sequences de-
scribed by these automata.

In the Linux 2.2 kernel, several common patterns of
scheduling events occur in the implementation of system
calls. These patterns are described by the automaton shown
in Figure 4 (double-circles in the automaton represent the
point at which control returns from the system call to the
application). The top two branches describe the behavior
of system calls that perform at most one scheduling event,
such as a request to yield the processor, possibly followed
by abossa.schedule event. The remaining branches
describe event sequences used by system calls that repeti-
tively yield the processor while waiting for access to a re-
source.

As in many Unix systems, the treatment of an interrupt
in the Linux 2.2 kernel is divided into a very short interrupt



��������	
��
���

�������� bossa.schedule ����������	
��
���

����������	
��
���

process.end

�������������

process.new.fork
yield.user
unblock.*

��������������������
��

block.*

����
��

��
��

��
�

��������	
��
���
yield.system

����������
bossa.schedule

��

��������
bossa.schedule

��

unblock.*

��

��������
block.*

��

��������	
��
���

Figure 4. Automaton of Bossa events occur-
ring in system calls

handler, which runs with interrupts disabled, followed by
more complexbottom-half code, which runs with interrupts
enabled. Scheduling points only occur in bottom-half code.
The automaton shown in Figure 5 describes the possible se-
quences of Bossa events used at these scheduling points:

��������	
��
����� ��
unblock.*

��
�������

����������	
��
���

		�������������
unblock.timer

system.clocktick ����������	
��
���

Figure 5. Automaton of Bossa events occur-
ring in interrupts

The complete set of event sequences consists of any se-
quence allowed by any interleaving of any number of in-
stances of the automata. For example, given the two au-
tomata above,system.clocktick � block.* �
unblock.* � bossa.schedule � block.* �
unblock.* is a valid event sequence.

3.2. Event types

Event sequences describe the possible control flow
through the event handlers of a scheduling policy. Comple-
mentarily, event types describe the possible inputs of each

event handler, and the expected result for each such possible
input. Event types are classified as those that describe OS
behavior local to a single system call or a single interrupt
handler, and those that describe the expected event handler
behavior taking into account the effects of event sequences
on process states.

Event types describing local behavior. An event type
specifies the following properties: (i) the emptiness or non-
emptiness of the states associated with each class, (ii) the
classes associated with the states of the source and target
processes of the event, and (iii) the permitted and required
movement of processes between classes during the handler.
An event can be associated with multiple types, reflecting
the various possible states of processes on entry to the event
handler and the various effects that the event handler is al-
lowed to produce. For example,system.clocktick
should intuitively either leave the running process in its
current state, if the process has ticks remaining, or pre-
empt the process if the process has exhausted its time slice;
block.* should move the running process to aBLOCKED
state;unblock.* should move the target process from a
BLOCKED state to aREADY state. These behaviors are de-
scribed by the following event types:

system.clocktick:
�target� RUNNING� � �target� RUNNING�
�target� RUNNING� � �target� READY�
�target� RUNNING� � �target� BLOCKED�

block.*:
�target� RUNNING� � �target� BLOCKED�

unblock.*:
�target� BLOCKED� � �target� READY�

In addition to describing OS properties, event types can
also be used to express constraints of the Bossa framework.
In particular, the Bossa framework ensures that thesys-
tem.clocktick handler is only called when there is a
running process, and thebossa.schedule handler is
only called when there is no running process. While these
constraints could be built into the Bossa compiler, express-
ing them at the level of event types makes all constraints on
handler behavior accessible to the policy developer within a
uniform framework.

Event types describing event sequence behavior. The
Bossa state of a process reflects the schedulability of a pro-
cess, rather than whether or not the process is currently
running. For example, ablock.* event places the tar-
get process in aBLOCKED state, indicating that the pro-
cess is not currently schedulable, but it is not until the next



bossa.schedule event that the process is actually pre-
empted. Because state changes can occur in both system
calls and interrupts, and the actions of system calls and in-
terrupts are unknown to each other, the Bossa state of a pro-
cess can be different than the state expected by the context
in which the process is used. Event types must thus take into
account all possible states of the source and target processes
that can result from event sequences.

We first consider how a process can have an unexpected
Bossa state in the treatment of a system call. In the Linux
2.2 kernel it is not possible to switch to a new process during
bottom half code. Consequently, an interrupt bottom half
that changes the state of the running process to indicate pre-
emption does not actually affect the running process until
the nextbossa.schedule event, which triggers a con-
text switch. Other events that can be performed by the ap-
plication before thisbossa.schedule event must thus
take into account the possibility that the currently running
process is not actually in theRUNNING state. The Linux
2.2 kernel avoids this issue because the operation of updat-
ing a process state is independent of the current state of the
process. This approach, however, is difficult to understand
and error-prone, because it relies on implicit conventions
about the possible state of the affected process at the point
of the state change. Bossa event types characterize both
the source and target state of each allowed transition. This
approach improves readability and safety of a policy, but
implies that multiple, sometimes unintuitive, cases must be
explicitly accounted for.

As an example of the interaction between interrupts and
system calls, consider an event sequence beginning with a
system.clocktick event in an interrupt bottom half
followed by ablock.* event in a system call. The type
of system.clocktick allows the handler to move the
process in theRUNNING state to aRUNNING, READY, or
BLOCKED state. The event type ofblock.*must thus de-
scribe the expected behavior when the target of the event is
in a state associated with any of these classes. The complete
set of event types forblock.* is thus:

�target� RUNNING� � �target� BLOCKED�
�� � � RUNNING� target� READY�

� �target� BLOCKED�
�� � � RUNNING� target� BLOCKED�

� �target� BLOCKED�

The inconsistency between the expected state of a pro-
cess and its Bossa state can also occur in the treatment of an
interrupt. To obtain access to a resource, one strategy used
in the Linux 2.2 kernel is for a process first to add itself to
a wait queue, then to test the availability of the resource,
and finally to block if the resource is not available. In this
case, the interrupt that unblocks waiting processes when the
resource becomes available may actually find that a wait-

ing process has not yet blocked, and thus is still running.2

Thus, the event type forunblock.* must account for
the case where the target process is in theRUNNING state.
Furthermore, becausesystem.clocktick followed by
unblock.* is a valid event sequence, the event type for
unblock.* must account for the case where the target
process is placed bysystem.clocktick in a READY
or BLOCKED state as well. The complete set of event types
for unblock.* is thus:

�target� BLOCKED� � �target� READY�
�target� RUNNING� � �target� RUNNING�
�target� READY� � �target� READY�
�target� BLOCKED� � �target� BLOCKED�

The set of event types induced by the event sequences for
unblock.* illustrates a case where the event sequences
require adding a type for an input configuration for which a
type based on local behavior is already available. Thesys-
tem.clocktick event can place the target process in a
BLOCKED state, but thisBLOCKED state is not necessar-
ily one that represents processes waiting for a resource, and
thus to be moved to aREADY state byunblock.*. The
new type�target� BLOCKED� � �target� BLOCKED� al-
lows theunblock.* handler to leave such processes in
their current state. This example illustrates the trade-off
between the goal of a precise description of OS behavior
and the goal of a description that is applicable to diverse
scheduling policies.

The complete set of event types for the Linux 2.2 kernel
is shown in Appendix A.

3.3. Event sequences and event types in the Bossa
compiler

Bossa provides an event-type compiler to be used by the
OS expert and a policy compiler to be used by the policy
designer, as illustrated by Figure 6. The event-type com-
piler checks that the event sequences and the event types
are mutually consistent. The policy compiler uses the event
types and event sequences to verify and optimize the policy
according to the kernel behavior and to produce the corre-
sponding C code.

The event-type compiler first checks that each of the au-
tomata is consistent with the event types describing the cor-
responding local behavior (i.e., in each sequence described
by an automaton, the output of one event must be an accept-
able input for the next event). The compiler then checks
the completeness of the provided types. For this purpose
it propagates the input configuration of each provided type

2This case is also checked for by the Linux 2.2 kernel, which treats an
unblock event differently depending on whether the target is blocked or
already in the runqueue.



policy
verifier

verified
policy

policy

policy
translator

C implementation

Policy compiler

event−type
compiler

Policy designer
OS expert

and event types

verified

and event types

event sequences

event sequences

Figure 6. Structure of the Bossa DSL compiler

through the intervening possible event sequences to iden-
tify all possible states of the source and target processes at
the point at which the event is actually called, and checks
that an event type is provided for each possible case. If this
step fails, the event-type compiler returns to the OS expert
a list of the input configurations for which no event type is
provided, as well as a possible event sequence leading to
each such configuration. When verification of the event se-
quences and event types succeeds, the event type compiler
produces a representation of this information suitable for
linking with the policy compiler.

Once the event sequences and event types are accepted
by the event-type compiler, they are used to create an in-
stance of the compiler for the targeted OS. For a given
scheduling policy, the Bossa compiler performs an inter-
procedural analysis of the specified event handlers, guided
by the event sequences, and checks that each event handler
implements the behavior required by its event types on all
reachable inputs. The policy compiler then translates the
policy into C code. Information about process states de-
rived from the event types is used to eliminate unnecessary
tests in the generated code.

4. Verification and optimization

The main benefit of event types is to enable error de-
tection. In our experience, the interactions captured by
the event sequences are easily overlooked, and the verifi-
cations performed by the Bossa compiler based on event
types detected several missing cases in our initial imple-
mentation of the Linux 2.2 policy. The event types also
enable the compiler to eliminate some unnecessary tests. In
the Linux 2.2 policy, these primarily affect the calculation
of the scheduler state. As shown in Appendix A, in sev-
eral of the event types derived from the event sequences the
RUNNING class is known to be empty. In these cases, the
compiler can statically determine that the scheduler state
cannot beRUNNING. The use of the event sequences by

the compiler allows the compiler to avoid analysis with re-
spect to input configurations that are allowed by the event
types but are not reachable in a given policy. For example,
theyield.user handler of the Linux 2.2 policy, shown
below, can place a process in theyield process variable.
This operation is only valid ifyield is empty, but the
event type ofyield.user does not give any informa-
tion aboutBLOCKED, which is the class of theyield vari-
able. The event sequences enable the compiler to determine
thatyield is always empty when the coderunning =>
yield is executed.

On yield.user {
if (!empty(READY) &&

e.target in running) {
if (running.policy == SCHED_OTHER) {

running => yield;
}
else {

running => ready;
}

}
}

5. Related Work

Recently, there has been growing interest in new ap-
proaches to verification of operating systems code, includ-
ing the introduction and checking of assertions [10], verifi-
cation that common sequences of operations are used in an
expected way [9], as well as more complex techniques such
as model checking [5, 15] and theorem proving [12]. Nev-
ertheless, all of these approaches are limited by the lack of
domain-specific knowledge, and thus exhaustive static ver-
ification of important properties is often infeasible.

The work on Composable Execution Environments
(CEE) includes a logic for specifying scheduling-specific
properties [17]. The goal of this logic is to check whether
undesirable interactions, such as deadlocks, can occur when
a given combination of existing schedulers manage a partic-
ular set of tasks. Our goal is orthogonal: to describe the in-
terface between an existing Bossa-ready scheduler and new
scheduling policies.

The integration of a Bossa policy into an OS is analo-
gous to the weaving performed by an aspect language [2].
The techniques for describing the behavior of the target sys-
tem proposed here could be useful to verify the correctness
of systems constructed using aspects, in particular aspect-
oriented OS components [8].

6. Conclusion

In this paper, we have presented a modular type system
describing OS properties for use with the Bossa DSL. The



information contained in these types significantly increases
the amount of verification that can be performed at com-
pile time, thus providing confidence in the correctness of
the policy. Some compiler optimizations are also enabled.
The separation of these types from the language implemen-
tation should facilitate the porting of Bossa to other operat-
ing systems. A port to Linux 2.4 is currently underway.

References

[1] A. Atlas and A. Bestavros. Design and implementation of
statistical rate monotonic scheduling in KURT Linux. In
IEEE Real-Time Systems Symposium, pages 272–276, 1999.

[2] L. P. Barreto, R. Douence, G. Muller, and M. S¨udholt. Pro-
gramming OS schedulers with domain-specific languages
and aspects: New approaches for OS kernel engineering. Int.
Workshop on Aspects, Components, and Patterns for Infras-
tructure Software at AOSD, April 2002.

[3] L.P. Barreto and G. Muller. Bossa: a language-based ap-
proach to the design of real-time schedulers. In10th Interna-
tional Conference on Real-Time Systems (RTS’2002), pages
19–31, Paris, France, March 2002.

[4] L.P. Barreto, G. Muller, J.L. Lawall, and K. Kono. A
framework for simplifying the development of kernel sched-
ulers: design and performance evaluation. Technical Report
02/8/INFO, Ecole des Mines de Nantes, 2002.

[5] A. Basu, M. Hayden, G. Morrisett, and T. von Eicken. A
language-based approach to protocol construction. InPro-
ceedings of the ACM SIGPLAN Workshop on Domain Spe-
cific Languages, Paris, France, January 1997.

[6] A. Chandra, M. Adler, and P. Shenoy. Deadline fair schedul-
ing: Bridging the theory and practice of proportional fair
scheduling in multiprocessor servers arbitrary deadlines. In
Proceedings of the 7th Real-Time Technology and Applica-
tions Symposium (RTAS’2001), Taipei, Taiwan, May 2001.

[7] S. Chandra, B. Richards, and J.R. Larus. Teapot: Language
support for writing memory coherence protocols. InPro-
ceedings of the ACM SIGPLAN’96 Conference on Program-
ming Language Design and Implementation, pages 237–248,
1996.

[8] Y. Coady, G. Kiczales, J.S. Ong, A. Warfield, and M. Feeley.
Brittle systems will break – not bend: Can aspect-oriented
programming help? InProceedings of the Tenth ACM
SIGOPS European Workshop (EW’2002), Saint-Emilion,
France, September 2002. To appear.

[9] A. Engler, D. Yu, S. Hallem, A. Chou, and B. Chelf. Bugs
as deviant behavior: A general approach to inferring errors
in systems code. InProceedings of the 18th ACM Sympo-
sium on Operating Systems Principles, pages 57–72, Banff,
Canada, October 2001.

[10] T. Jim, Morrisett G, Grossman D, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. InUSENIX Annual
Technical Conference, pages 275–288, Monterey, CA, June
2002.

[11] I. Kouvelas and V. Hardman. Overcoming workstation
scheduling problems in a real-time audio tool. InProceed-
ings of the USENIX 1997 Conference, pages 235–242, Ana-
heim, CA, January 1997.

[12] X. Liu, C. Kreitz, R. van Renesse, J. Hickey, M. Hay-
den, K. Birman, and R. Constable. Building reliable, high-
performance communication systems from components. In
Proceedings of the 17th ACM Symposium on Operating Sys-
tems Principles, Kiawah Island, SC, December 1999.

[13] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming. In
Proceedings of the Fourth Symposium on Operating Systems
Design and Implementation, pages 17–30, San Diego, Cali-
fornia, October 2000.

[14] J. Nieh and M. S. Lam. The design, implementation and
evaluation of SMART: A scheduler for multimedia applica-
tions. InProceedings of the 16th ACM Symposium on Oper-
ating Systems Principles (SOSP’97), pages 184–197, Octo-
ber 1997.

[15] J. Penix, W. Visser, E. Engstrom, A. Larson, and
N. Weininger. Verification of time partitioning in the DEOS
scheduler kernel. InProceedings of the 22nd International
Conference on Software Engineering (ICSE 2000), pages
488–497, Limerick, Ireland, June 2000.

[16] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In18th ACM
Symposium on Operating Systems Principles, pages 89–102,
October 2001.

[17] J. Regehr, A. Reid, K. Webb, and J. Lepreau. Composable
execution environments. Flux group technical note 2002-02,
University of Utah, May 2002.

[18] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A feedback-driven proportion allocator for
real-rate scheduling. InProceedings of the 3rd Symposium
on Operating Systems Design and Implementation (OSDI-
99), pages 145–158, February 1999.

[19] S. Thibault, J. Marant, and G. Muller. Adapting distributed
applications using extensible networks. InProceedings of
the 19th International Conference on Distributed Comput-
ing Systems, pages 234–243, Austin, Texas, May 1999. IEEE
Computer Society Press.

[20] D. K. Y. Yau and S. S. Lam. Adaptive rate-controlled
scheduling for multimedia applications.IEEE/ACM Trans-
actions on Networking, 5(4):475–488, August 1997.

A. Event types for the Linux 2.2 kernel

Event types are classified as being derived from lo-
cal behavior or being derived from interactions due to
event sequences. The type of a hierarchical event ap-
plies to all more specific events for which no other in-
formation in that section is provided. For example, the
types based on event sequences foryield.* also ap-
ply to theyield.user, yield.system.pause, and
yield.system.immediate events.



A.1 Event types describing local behavior

process.new.* :
[tgt in NOWHERE] -> {[tgt in READY], [tgt in BLOCKED]}

process.new.fork :
[src in RUNNING, tgt in NOWHERE] -> {[src in RUNNING, tgt in READY],

[src in RUNNING, tgt in BLOCKED]}

process.new.initial_process :
[[] = RUNNING, tgt in NOWHERE] -> {[[] = RUNNING, tgt in READY],

[[] = RUNNING, tgt in BLOCKED]}

process.end : {[tgt in BLOCKED], [tgt in READY]} -> [tgt in TERMINATED]

process.end : [tgt in RUNNING] -> [tgt in TERMINATED]

yield.* :
[tgt in RUNNING] -> { [tgt in READY], [tgt in BLOCKED], [tgt in RUNNING] }

yield.system.* :
[tgt in RUNNING] -> { [tgt in READY], [tgt in BLOCKED], [tgt in RUNNING] }

yield.system.pause :
[tgt in RUNNING] -> { [tgt in READY], [tgt in BLOCKED], [tgt in RUNNING] }

yield.system.immediate :
[tgt in RUNNING] -> { [tgt in READY], [tgt in RUNNING] }

yield.user :
[tgt in RUNNING] -> { [tgt in READY], [tgt in BLOCKED], [tgt in RUNNING] }

system.clocktick :
[tgt in RUNNING] -> { [tgt in READY], [tgt in BLOCKED], [tgt in RUNNING] }

block.* : [tgt in RUNNING] -> [tgt in BLOCKED]

unblock.* : [tgt in RUNNING] -> [tgt in RUNNING]

unblock.* : [p in RUNNING, tgt in BLOCKED]
-> { [[p,tgt] in READY],

[p in RUNNING, tgt in READY],
[p in RUNNING, tgt in BLOCKED] }

unblock.* : [[] = RUNNING, tgt in BLOCKED]
-> { [[] = RUNNING, tgt in READY],

[[] = RUNNING, tgt in BLOCKED] }

unblock.synchronous_wake_up_process : [tgt in RUNNING] -> [tgt in RUNNING]

unblock.synchronous_wake_up_process :
[tgt in BLOCKED] -> { [tgt in READY], [tgt in BLOCKED] }

unblock.wake_up_process : [tgt in RUNNING] -> [tgt in RUNNING]

unblock.wake_up_process : [p in RUNNING, tgt in BLOCKED]
-> { [[p,tgt] in READY],

[p in RUNNING, tgt in READY],
[p in RUNNING, tgt in BLOCKED] }

unblock.wake_up_process : [[] = RUNNING, tgt in BLOCKED]
-> { [[] = RUNNING, tgt in READY],

[[] = RUNNING, tgt in BLOCKED] }

unblock.timer : [tgt in RUNNING] -> [tgt in READY]

unblock.timer : [tgt in READY] -> [tgt in READY]

unblock.timer : [p in RUNNING, tgt in BLOCKED] ->
{ [p in RUNNING, tgt in BLOCKED],

[p in RUNNING, tgt in READY],
[[p,tgt] in READY] }

unblock.timer : [[] = RUNNING, tgt in BLOCKED]
-> { [[] = RUNNING, [tgt] in READY],

[[] = RUNNING, [tgt] in BLOCKED] }

bossa.schedule : [[] = RUNNING, q in READY] -> [q in RUNNING, READY!]
}

A.2 Event types describing event sequence behav-
ior

unblock.timer :
[tgt in TERMINATED] -> [tgt in TERMINATED]

unblock.* :
[tgt in TERMINATED] -> [tgt in TERMINATED]

unblock.* :
[tgt in READY] -> [tgt in READY]

yield.* :
[[] = RUNNING, tgt in BLOCKED] -> [tgt in BLOCKED]

yield.* :
[[] = RUNNING, tgt in READY] -> { [tgt in READY], [tgt in BLOCKED] }

unblock.wake_up_process :
[tgt in READY] -> [tgt in READY]

unblock.synchronous_wake_up_process :
[tgt in READY] -> [tgt in READY]

process.new.fork :
[tgt in NOWHERE, [] = RUNNING, src in BLOCKED] ->

{[src in BLOCKED, tgt in READY], [[src,tgt] in BLOCKED]}

process.new.fork :
[tgt in NOWHERE, [] = RUNNING, src in READY] ->

{[[src,tgt] in READY], [src in READY, tgt in BLOCKED]}

block.* :
[[] = RUNNING, tgt in BLOCKED] -> [tgt in BLOCKED]

block.* :
[[] = RUNNING, tgt in READY] -> [tgt in BLOCKED]


